Disease X-19 Medical Review

medrxiv Subject Collection: Infectious Diseases: Methylome-wide analysis reveals epigenetic marks associated with resistance to tuberculosis in HIV-infected individuals from East Africa

Background: Tuberculosis (TB) is the most deadly infectious disease globally and highly prevalent in the developing world, especially sub-Saharan Africa. Even though a third of humans are exposed to Myocbacterium tuberculosis (Mtb), most infected immunocompetent individuals do not develop active TB. In contrast, for individuals infected with both TB and the human immunodeficiency virus (HIV), the risk of active disease is 10% or more per year. Previously, we identified in a genome-wide association study a region on chromosome 5 that was associated with resistance to TB. This region included epigenetic marks that could influence gene regulation so we hypothesized that HIV-infected individuals exposed to Mtb, who remain disease free, carry epigenetic changes that strongly protect them from active TB. To test this hypothesis, we conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania. Results: In 221 HIV-infected adults from Uganda and Tanzania, we identified 3 regions of interest that included markers that were differentially methylated between TB cases and LTBI controls, that also included methylation QTLs and associated SNPs: chromosome 1 (RNF220, p=4×10-5), chromosome 2 (between COPS8 and COL6A3 genes, p=2.7×10-5), and chromosome 5 (CEP72, p=1.3×10-5). These methylation results colocalized with associated SNPs, methylation QTLs, and methylation x SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. Conclusion: Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.

medrxiv Subject Collection: Infectious Diseases